Sains Malaysiana 54(12)(2025): 2917-2924
http://doi.org/10.17576/jsm-2025-5412-10
Mechanistic Study of PD-1 Inhibitors in the
Immune Microenvironment of Liver Metastases: A Comprehensive Analysis Based on
Radiomics
(Kajian Mekanistik Perencat PD-1 dalam Persekitaran Mikro Imun Metastasis Hati: Analisis Komprehensif Berdasarkan Radiomik)
XIANG ZHUANG1,†, HUI ZHANG1,†,
PING CHEN1, XIAOLING TIAN2, XINYI ZHANG3, GE SONG2, YUBO
LIU2, YUNQI HUA3 & ZHENFENG WANG4,*
1Department
of Radiographic Imaging, Baotou Cancer Hospital, Baotou 014030, Inner Mongolia,
P.R. China
2Department
of Graduate School, Baotou Medical College, Inner Mongolia University of
Science and Technology, Baotou 014040, Inner Mongolia, P.R. China
3Department
of Medical Oncology, Baotou Cancer Hospital, Baotou 014030, Inner Mongolia,
P.R. China
4Department
of Radiographic Imaging, Baotou Mengzhong Hospital,
Baotou 014040, Inner Mongolia, P.R. China
Received: 17 March 2025/Accepted: 3 December
2025
†These authors contributed equally to this work
Abstract
Liver metastases are a common and clinically challenging type of tumor.
Their poor prognosis has prompted researchers to seek new treatments. The
immune microenvironment of liver metastases is complex and critical. It
involves interactions among various immune cells, cytokines, and signaling
pathways that influence tumor growth, metastasis, and treatment efficacy. In recent
years, PD-1 inhibitors have emerged as a major breakthrough in immunotherapy,
showing promise in treating liver metastases. However, accurately predicting
patient responses to PD-1 inhibition remains a pressing challenge. Radiomics is
a non-invasive tool that analyzes features from medical images to show how
tumor biology affects treatment responses. This article reviews the features of
the immune microenvironment in liver metastases, how PD-1 inhibitors work, and
the advancements in radiomics for predicting treatment responses in liver
metastases. It aims to offer useful insights for clinical practice and point
out future research directions to further improve treatment outcomes and
accurate treatment evaluations for patients with liver metastases.
Keywords: Immune microenvironment; liver metastases; PD-1
inhibitors; radiomics
Abstrak
Metastasis hati merupakan sejenis tumor yang biasa dan mencabar secara klinikal. Prognosisnya yang buruk telah mendorong para penyelidik untuk mencari rawatan baharu. Persekitaran mikro imun metastasis hati adalah kompleks dan kritikal. Ia melibatkan interaksi antara pelbagai sel imun, sitokin dan laluan isyarat yang mempengaruhi pertumbuhan tumor,
metastasis dan keberkesanan rawatan. Dalam beberapa tahun kebelakangan ini, perencat PD-1 telah muncul sebagai satu kejayaan besar dalam imunoterapi, menunjukkan potensi dalam merawat metastasis hati. Walau bagaimanapun, meramalkan tindak balas pesakit dengan tepat terhadap perencatan PD-1 masih menjadi cabaran. Radiomik ialah alat bukan invasif yang menganalisis ciri daripada imej perubatan untuk menunjukkan bagaimana biologi tumor mempengaruhi tindak balas rawatan. Kertas ini mengulas ciri persekitaran mikro imun dalam metastasis hati, bagaimana perencat PD-1 berfungsi dan kemajuan dalam radiomik untuk meramalkan tindak balas rawatan dalam metastasis hati. Ia bertujuan untuk menawarkan pandangan berguna untuk amalan klinikal dan menunjukkan hala tuju penyelidikan masa depan untuk meningkatkan lagi hasil rawatan dan penilaian rawatan yang tepat untuk pesakit dengan metastasis hati.
Kata kunci: Metastasis hati; perencat PD-1; persekitaran mikro imun; radiomik
REFERENCES
Abaza,
A., Sid Idris, F., Anis Shaikh, H., Vahora, I., Moparthi, K.P., Al Rushaidi,
M.T., Muddam, M.R., Obajeun, O.A., Jaramillo, A.P. & Khan, S. 2023.
Programmed cell death protein 1 (PD-1) and programmed cell death ligand 1
(PD-L1) immunotherapy: a promising breakthrough in cancer therapeutics. Cureus 15(9): e44582. doi:
10.7759/cureus.44582
Ahn, H., Song, G.J., Jang, S.H., Lee,
H.J., Lee, M.S., Lee, J.H., Oh, M.H., Jeong, G.C., Lee, S.M. & Lee, J.W.
2022. Relationship of FDG PET/CT textural features with the tumor
microenvironment and recurrence risks in patients with advanced gastric
cancers. Cancers (Basel) 14(16): 3936. doi: 10.3390/cancers14163936
Billan, S., Kaidar-Person, O. & Gil,
Z. 2020. Treatment after progression in the era of immunotherapy. Lancet Oncol. 21(10): e463-e476. doi:
10.1016/s1470-2045(20)30328-4
Borcoman, E., Kanjanapan, Y., Champiat,
S., Kato, S., Servois, V., Kurzrock, R., Goel, S., Bedard, P. & Le
Tourneau, C. 2019. Novel patterns of response under immunotherapy. Ann.
Oncol. 30(3): 385-396. doi: 10.1093/annonc/mdz003
Chen, J., Liu, K., Luo, Y., Kang, M.,
Wang, J., Chen, G., Qi, J., Wu, W., Wang, B., Han, Y., Shi, L., Wang, K., Han,
X., Ma, X., Liu, W., Ding, Y., Wang, L., Liang, H., Wang, L. & Chen, J.
2023. Single-cell profiling of tumor immune microenvironment reveals immune
irresponsiveness in gastric signet-ring cell carcinoma. Gastroenterology 165(1): 88-103. doi: 10.1053/j.gastro.2023.03.008
Costa, L.B., Queiroz, M.A., Barbosa, F.G.,
Nunes, R.F., Zaniboni, E.C., Ruiz, M.M., Jardim, D., Gomes Marin, J.F., Cerri,
G.G. & Buchpiguel, C.A. 2021. Reassessing patterns of response to
immunotherapy with PET: From morphology to metabolism. Radiographics 41(1): 120-143. doi: 10.1148/rg.2021200093
DiLorenzo, M.P., Lee, S., Rathod, R.H.,
Raimondi, F., Farooqi, K.M., Jain, S.S., Samyn, M.M., Johnson, T.R., Olivieri,
L.J., Fogel, M.A., Lai, W.W., Renella, P., Powell, A.J., Buddhe, S., Stafford,
C., Johnson, J.N., Helbing, W.A., Pushparajah, K., Voges, I., Muthurangu, V.,
Miles, K.G., Greil, G., McMahon, C.J., Slesnick, T.C., Fonseca, B.M., Morris,
S.A., Soslow, J.H., Grosse-Wortmann, L., Beroukhim, R.S. & Grotenhuis, H.B.
2024. Design and implementation of multicenter pediatric and congenital studies
with cardiovascular magnetic resonance: Big data in smaller bodies. J. Cardiovasc. Magn. Reson. 26(1):
101041. doi: 10.1016/j.jocmr.2024.101041
Ebrahimpour, L., Lemaréchal, Y.,
Yolchuyeva, S., Orain, M., Lamaze, F., Driussi, A., Coulombe, F., Joubert, P.,
Després, P. & Manem, V.S.K. 2024. Sensitivity of CT-derived radiomic
features to extraction libraries and gray-level discretization in the context
of immune biomarker discovery. Br. J.
Radiol. 97(1164): 1982-1991. doi: 10.1093/bjr/tqae187
Hagenstein, J., Burkhardt, S., Sprezyna,
P., Tasika, E., Tiegs, G. & Diehl, L. 2024. CD44 expression on murine
hepatic stellate cells promotes the induction of monocytic and
polymorphonuclear myeloid-derived suppressor cells. J. Leukoc. Biol. 116(1): 177-185. doi: 10.1093/jleuko/qiae053
Han, N., Liu, Y., Du, J., Xu, J., Guo, L.
& Liu, Y. 2023. Regulation of the host immune microenvironment in
periodontitis and periodontal bone remodeling. Int. J. Mol. Sci. 24(4): 3158. doi: 10.3390/ijms24043158
Han, Y., Liu, D. & Li, L. 2020.
PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 10(3): 727-742.
He, S., Hu, D., Feng, H., Xue, Y., Jin, J.
& Wang, X. 2020. Efficacy of immunotherapy with PD-1 inhibitor in
colorectal cancer: A meta-analysis. J.
Comp. Eff. Res. 9(18): 1285-1292. doi: 10.2217/cer-2020-0040
Hectors, S.J., Lewis, S., Besa, C., King,
M.J., Said, D., Putra, J., Ward, S., Higashi, T., Thung, S., Yao, S., Laface,
I., Schwartz, M., Gnjatic, S., Merad, M., Hoshida, Y. & Taouli, B. 2020.
MRI radiomics features predict immuno-oncological characteristics of
hepatocellular carcinoma. Eur. Radiol. 30(7): 3759-3769. doi: 10.1007/s00330-020-06675-2
Hirano, T., Honda, T., Kanameishi, S.,
Honda, Y., Egawa, G., Kitoh, A., Nakajima, S., Otsuka, A., Nomura, T.,
Dainichi, T., Yaguchi, T., Inozume, T., Kataoka, T.R., Tamada, K. &
Kabashima, K. 2021. PD-L1 on mast cells suppresses effector CD8+ T-cell activation in the skin in murine contact hypersensitivity. J. Allergy. Clin. Immunol. 148(2):
563-573.e7. doi: 10.1016/j.jaci.2020.12.654
Ho, L.M., Samei, E., Mazurowski, M.A.,
Zheng, Y., Allen, B.C., Nelson, R.C. & Marin, D. 2019. Can texture analysis
be used to distinguish benign from malignant adrenal nodules on unenhanced CT,
contrast-enhanced CT, or in-phase and opposed-phase MRI? AJR Am.
J. Roentgenol. 212(3): 554-561. doi: 10.2214/ajr.18.20097
Huang, J., C. He, P. Xu, B. Song, H. Zhao,
B. Yin, M. He, X. Lu, J. Wu, and H. Wang. 2024. Development and validation of a
clinical-radiomics model for prediction of prostate cancer: A multicenter
study. World J. Urol. 42(1): 275.
doi: 10.1007/s00345-024-04995-2
Jiang, Y., Chen, M., Nie, H. & Yuan,
Y. 2019. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and
future considerations. Hum. Vaccin.
Immunother. 15(5): 1111-1122. doi: 10.1080/21645515.2019.1571892
Liu, R., He, X. & Li, Z. 2022.
Positive clinical outcomes following therapy with programmed cell death protein
1/programmed cell death ligand 1 inhibitors in neuroendocrine carcinoma of the
cervix. Front. Pharmacol. 13:
1029598. doi: 10.3389/fphar.2022.1029598
Marquis-Gravel, G., Faulkner, M., Merritt,
G., Farrehi, P., Zemon, N., Robertson, H.R., Jones, W.S. & Kraschnewski, J.
2023. Importance of patient engagement in the conduct of pragmatic multicenter
randomized controlled trials: The ADAPTABLE experience. Clin
Trials 20(1): 31-35. doi: 10.1177/17407745221118559
Nguyen, E., Xu, X. & Robinson, R.
2020. Lessons learned from an academic, interdisciplinary, multi-campus,
research collaboration. Innov. Pharm. 11(2): 10.24926/iip.v11i2.3202. doi: 10.24926/iip.v11i2.3202
Nishino, M., Hatabu, H. & Hodi, F.S.
2019. Imaging of cancer immunotherapy: Current approaches and future
directions. Radiology 290(1): 9-22.
doi: 10.1148/radiol.2018181349
Palumbo, B., Bianconi, F., Palumbo, I.,
Fravolini, M.L., Minestrini, M., Nuvoli, S., Stazza, M.L., Rondini, M. &
Spanu, A. 2020. Value of shape and texture features from (18)F-FDG PET/CT to
discriminate between benign and malignant solitary pulmonary nodules: An
experimental evaluation. Diagnostics
(Basel) 10(9): 696. doi: 10.3390/diagnostics10090696
Park, H.J., Kim, K.W., Pyo, J., Suh, C.H.,
Yoon, S., Hatabu, H. & Nishino, M. 2020. Incidence of pseudoprogression
during immune checkpoint inhibitor therapy for solid tumors: A systematic
review and meta-analysis. Radiology 297(1): 87-96. doi: 10.1148/radiol.2020200443
Patel, J.D., Pozorski, V.J., Tavberidze,
N., Buehler, D.G., Huang, W., Bennett, D.D. & Ma, V.T. 2024. Successful
treatment of metastatic primary cutaneous adnexal carcinoma with a PD-1
inhibitor. J. Immunother. 47(8):
323-327. doi: 10.1097/cji.0000000000000522
Pontoriero, A.D., Nordio, G., Easmin, R.,
Giacomel, A., Santangelo, B., Jahuar, S., Bonoldi, I., Rogdaki, M., Turkheimer,
F., Howes, O. & Veronese, M. 2021. Automated data quality control in FDOPA
brain PET imaging using deep learning. Comput.
Methods Programs Biomed. 208: 106239. doi: 10.1016/j.cmpb.2021.106239
Qin, M., Chen, G., Hou, J., Wang, L.,
Wang, Q., Wang, L., Jiang, D., Hu, Y., Xie, B., Chen, J., Wei, H. & Xu, G.
2022. Tumor-infiltrating lymphocyte: Features and prognosis of lymphocytes
infiltration on colorectal cancer. Bioengineered 13(6): 14872-14888. doi: 10.1080/21655979.2022.2162660
Ren, L., Zhu, D., Benson 3rd, A.B.,
Nordlinger, B., Koehne, C.H., Delaney, C.P., Kerr, D., Lenz, H.J., Fan, J.,
Wang, J., Gu, J., Li, J., Shen, L., Tsarkov, P., Tejpar, S., Zheng, S., Zhang,
S., Gruenberger, T., Qin, X., Wang, X., Zhang, Z., Poston, G.J. & Xu, J.
2020. Shanghai international consensus on diagnosis and comprehensive treatment
of colorectal liver metastases (version 2019). Eur. J. Surg. Oncol. 46(6): 955-966. doi:
10.1016/j.ejso.2020.02.019
Saida, Y., Brender, J.R., Yamamoto, K.,
Mitchell, J.B., Krishna, M.C. & Kishimoto, S. 2021. Multimodal molecular
imaging detects early responses to immune checkpoint blockade. Cancer
Res. 81(13): 3693-3705. doi: 10.1158/0008-5472.Can-20-3182
Saravi, B., Zink, A., Tabukashvili, E.,
Güzel, H.E., Ülkümen, S., Couillard-Despres, S., Lang, G.M. & Hassel, F.
2024. Integrating radiomics with clinical data for enhanced prediction of
vertebral fracture risk. Front Bioeng.
Biotechnol. 12: 1485364. doi: 10.3389/fbioe.2024.1485364
Sebastian, A.M. & Peter, D. 2022.
Artificial intelligence in cancer research: Trends, challenges and future
directions. Life (Basel) 12(12):
1991. doi: 10.3390/life12121991
Tu, L., Guan, R., Yang, H., Zhou, Y.,
Hong, W., Ma, L., Zhao, G. & Yu, M. 2020. Assessment of the expression of
the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different
cancers in relation to treatment response, tumor-infiltrating immune cells and
survival. Int. J. Cancer 147(2):
423-439. doi: 10.1002/ijc.32785
Wang, L., Wu, X., Tian, R., Ma, H., Jiang,
Z., Zhao, W., Cui, G., Li, M., Hu, Q., Yu, X. & Xu, W. 2023. MRI-based
pre-Radiomics and delta-Radiomics models accurately predict the post-treatment
response of rectal adenocarcinoma to neoadjuvant chemoradiotherapy. Front.
Oncol. 13: 1133008. doi: 10.3389/fonc.2023.1133008
Xiong, L.J., Tian, Y.F., Zhai, C.T. &
Li, W. 2023. Application and effectiveness of Chinese medicine in regulating
immune checkpoint pathways. Chin. J.
Integr. Med. 29(11): 1045-1056. doi: 10.1007/s11655-023-3743-8
Xu, J., Lou, S., Huang, H., Xu, J. &
Luo, F. 2024. Regulation and crosstalk of cells and factors in the pancreatic
cancer microenvironment. Curr. Cancer
Drug Targets 25(9): 1029-1048. doi: 10.2174/0115680096317840240723071018
Yamaguchi, H., Hsu, J.M., Sun, L., Wang,
S.C. & Hung, M.C. 2024. Advances and prospects of biomarkers for immune
checkpoint inhibitors. Cell. Rep. Med. 5(7): 101621. doi: 10.1016/j.xcrm.2024.101621
Zheng, Y., Fang, Y.C. & Li, J. 2019.
PD-L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol. Lett. 18(5): 5399-5407. doi:
10.3892/ol.2019.10903
Zhou, M., Li, S. & Pathak, J.L. 2019.
Pro-inflammatory cytokines and osteocytes. Curr.
Osteoporos. Rep. 17(3): 97-104. doi: 10.1007/s11914-019-00507-z
Zhou, H., Wang, Y., Xu, H., Shen, X.,
Zhang, T., Zhou, X., Zeng, Y., Li, K., Zhang, L., Zhu, H., Yang, X., Li, N.,
Yang, Z. & Liu, Z. 2022a. Noninvasive interrogation of CD8+ T
cell effector function for monitoring early tumor responses to immunotherapy. J. Clin. Invest. 132(16): e161065. doi:
10.1172/jci161065
Zhou, S., Zhu, J., Xu, J., Gu, B., Zhao,
Q., Luo, C., Gao, Z., Chin, Y.E. & Cheng, X. 2022b. Anti-tumour potential
of PD-L1/PD-1 post-translational modifications. Immunology 167(4): 471-481. doi: 10.1111/imm.13573
*Corresponding author; email:
wangzhenfeng163@126.com